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A previously proposed method of energy minimization is developed for MC 
SCF wavefunctions formed by all-pair excitations for a closed-shell system. The 
orbital coefficients are optimized by a gradient approach using a suitable 
orthogonal transformation of the atomic basis, while optimum CI coefficients 
are determined solving the usual secular problem for the lowest eigenvalue, after 
each optimization of the orbitals. Applications to LiH and N H  3 molecules show 
that the method is numerically well stable, and is capable of accounting for a 
large part of the correlation energy giving results which compare well with those 
of the conventional CI method. 

Key words: Direct minimization of energy - P E M C S C F  formalism 

1. Introduction 

In this paper the previously proposed method of direct energy minimization by a 
double iteration procedure [ la ,  b, c] is developed for a MC SCF expansion 
consisting of a single closed-shell determinant together with all double excitation 
functions (single determinants) obtained by promoting a pair of electrons from 
occupied to unoccupied orbitals, the so-called Paired Excitation MC SCF method 
(PEMCSCF) of Ref. [2]. 

The PEMCSCF method has received a great deal of attention, being a restricted but 
effective way to obtain molecular correlation energies [3a, b, 4 and Refs. therein]. 
Essentially two approaches have been developed for optimum orbital de- 
termination, either by solving iteratively a series of coupled pseudo-eigenvalue 
problems (involving Lagrangian multipliers), or by directly minimizing the energy 
functional, e.g. by a steepest descent technique or two-by-two rotations [3]. In 
particular, recently a direct variational approach has been given in which the 
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orbitals are obtained from a single Fock-like pseudoeigenvalue equation for all the 
orbitals [2]. 

In our formulation the LCAO coefficient optimization is achieved by a direct 
minimization of the energy acting through a suitable orthogonal transformation, 
while the optimization of the CI expansion coefficients is obtained by solving the 
usual secular equations for the lowest eigenvector after each orbital optimization. In 
Sect. 2 we give the derivation of the energy together with its gradient and stationary 
conditions; in Sect. 3 some connections with other works are pointed out; in Sect. 4 
the minimization steps are described; in Sect. 5 numerical applications to LiH and 
NH 3 molecules are presented to test the performance of the procedure. 

2. Energy Gradient and Stationary Conditions. Optimum Orbitals 

Let us consider a system with a non-degenerate closed-shell ground state 
represented by a multi-configuration wavefunction of the form 

mo rnv 

Y vbv1, (1) 
1 V 

in which 7/0 is a basic determinant of doubly-occupied MO's and the ~1,v are 
similar single determinants obtained by exciting a pair of electrons from an occupied 
orbital I o f t h e  m o orbitals doubly-occupied in 7/0 ({I} set) to a virtual orbital Vofmv 
orbitals unoccupied in 7% ({ V} set). The whole set {K} of orbitals {I} and { V} is 
assumed orthonormal and the CI expansion coefficients b o and bv~ fulfill the 
orthonormality condition 

b 2 + tr(b/~) = 1, (2) 

where b is the my x m o matrix of elements bv~. 

In the following/,  I ' , . . .  denote the orbitals of the {I} set, V, V ' , . . .  the orbitals of 
the { V} set, and K, L , . . .  the orbitals of both sets. All quantities are taken real, for 
convenience. 

Going directly into the LCAO expansion of the MO {K} in terms of an orthonormal 
atomic set of m basis functions {Z} and retaining the notation of Ref. [ lc]  we write 

I I ) = [ z ) C  and I V ) = I z ) D  ( w i t h ( z [ z ) = l m ) .  (3) 

Moreover, following Ref. [2, 5c] we define the m x rn density matrix for the Kth 
NO,  Ig) ,  

g K= TKTx, (=  IK><gl) (4) 

and note that R K is the AO representation of the projection operator onto the one- 
dimensional subspace spanned by the Kth MO, TK being the corresponding single 
column of the matrix C or D, which collects the LCAO coefficients. The following 
constraints must be satisfied by the density matrices R K (idempotency, exclusiveness 
and identity resolution) 

RXR L = 6i~rR K (tr R K = 1 ; ~ R K = 1 m ; all K, L). (5) 
K 
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Again the following matrices associated with a matrix R are defined as usual [ lc]  in 
the AO basis r, s, t, u . . . .  

m 

[G(e)qrs= ~ R~u(2<rulst>- <ru Its>) 
t , u  

m 

[-K(R)qrs = ~ R,,<ru ]ts). (r, s = 1 . . . .  m) (6) 
t , u  

Then the matrix elements of the Hamiltonian H in terms of the matrices R ~ (AO 
basis) turn out to have the following expressions 

( T o  [ g4r [ To ) = Eo = tr(Rf) + tr(Rh) 

(~eo I ~ I ~ez, v )  =tr[RIK(RV)] 

( ~i, v [ ~ I 7Jl ', v' ) = fin '6vv ,Eo + 6u "tr[RVK(RV')] (7) 

+ 6vv,tr[R~K(R I')] - 2611,6vv,tr[RVG(R1)] 

+ 26ii ,6vv ,tr [(R v - R~)h], 

where 
m0 

h -  h(R) = f +  G(R) and R = Z R'.  
I 

Introducing the two symmetric matrices 

A =/~b and B =  b/~, (8) 

the energy expectation value E corresponding to the wavefunction (1) is found to be 

mo my  

E = E o + 2 ~ ~ {bobvltr[RVK(R I )] - @itr[R v G(R I)]} 
1 V 

mo mo 

+~, Z (2-6n')Au' tr[RtK(R1')]  
I I ' = I  

my  mv 

+ Z ~, (2-6vv')Bvv'tr[RVK(RV')] 
V V ' = V  

my ?no 

+ 2 Z Bvvtr(Rvh) - 2 Z Autr(RJh) �9 (9) 
V I 

In the MC SCF theory the two sets of coefficients, CI expansion coefficients 
{bo, bv~} and LCAO MO coefficients {T~K}, are varied in turn. The variation in E 
with respect to the CI coefficients is simply a linear variation problem involving the 
computat ion of the lowest eigenvector of the CI matrix of  elements (7) and will not 
be discussed further. Instead, the non-linear problem of variation with respect to the 
orbital coefficients TK, or the density matrices R K, will be considered now. 

I f  an orthogonal transformation Uis performed on the full atomic basis [Z), namely 
if IZ) ~ [Z) U, the density matrices R K are transformed into 

RK= URK(J, (10) 
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and the energy Eis again given by the expression (9) but with KK in place of R x. Of 
course the constraints (5) hold true also for the transformed matrices KK. 

As in earlier works [1], the orthogonal matrix we take is 

U(X)=-L,+2P -~, w i t h P = l ~ + X - . ~ ,  

where X is an arbitrary m x m matrix and the elements of X -  X may be regarded as 
independent unconstrained variables. Then, letting U~ U+3U, the first-order 
change 6E of the energy Ewith respect to Xis easily worked out (the method follows 
closely one developed elsewhere [-1]) and after some straightforward algebra the 
gradient matrix Gx for variation in X is found to be 

Gx = - 8/~- *(E~- F.x)P- ~, (11) 

where the matrix E~ is defined by 

E:,=hR + ~ ~ {bobw[K(R')kV + K(kV)R ~] -bZ,[G(k')RV + G(RV)R~]} 
1 V 

+ ~  ~ ( 2 - 6 u , ) A , , , K ( R " ) R '  
1 1 " = I  

+ ~ ~ (2-avv,)Bvv,K(RV')R v 
V V ' = V  

+ ~ o~ ~ [h,~ ~ + G(R v)~] _~  &, Eh,~' + G(R ')k].  
v I 

The condition for a stationary energy, Gx = O, is then equivalent to the condition that 
Ex has to be a symmetric matrix, i.e. 

Ex=/~ x. (12) 

These are m(m-1)/2 relations just necessary to determine the elements of the 
arbitrary skew-symmetric matrix X -  X. Eventually the density matrices Kx and the 
orbitals TK = UTK are obtained, which therefore yield a stationary value of the 
energy functional (9) and are then the optimum quantities. 

Of course the expectation value of any physical quantity can be expressed in terms of 
the matrices ~K: thus, for example, the electronic part of the dipole moment 
J / =  ~ i~ i  is 

( 7* ] ./tl I ~ )  -=2 tr (raP1) 

where 

vl =/~ + Z Bvv,~ V- Z A,,/~' 
V 1 

is the one-body density matrix (a factor 2 apart) and m is the matrix of elements 
{rl~i]s). 
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It is worth noting that the energy can be obtained as a side result in the gradient 
computation employing the relation 

E = t r  E x + t r  (JP1). 

3. R e l a t i o n  to  O t h e r  Work 

In this section the short line over the matrices R E is omitted for simplicity. 
Introducing the effective Hamiltonians [-2, 3a] h x for the {I} set orbitals and h v for 
the { V} set orbitals 

h' = (1 - A .  ) f +  ~ (1 - A H - As ,1, )G(R")  + ~ A H ,K(R 1' ) 
1 '  1 '  

+ Z [-(B,,,~ - b~,)G(g")  + bobv,X(R V)], (13) 
V 

it is a straightforward matter to prove the identity 

E x = ~ h E R  E (K runs over all orbitals), (t4) 
K 

and the stationary energy condition (12) can thus be cast into the form 

G:~o =- ~, hER E - ~. REh E = 0. (15) 
K K 

Now, multiplying (15) by, say, R E on one side and R L on the other the following 
relations are obtained 

-- RKGxo RL =-- RK(h K - hL)R L = 0 (K, L = 1 , . . .  m; K:~ L), (15') 

which are the necessary and sufficient conditions for the existence of the optimum 
MO coefficients just in the form given in Ref. I-2] (see also [5, la]). The conditions 
(15') can be brought together to define a single effective (Fock-like) Hamiltonian ~-F 
[-2, 5], whose commutation conditions with each R K, [-~-F, R K ] = 0, are equivalent to 
Eq. (15'): 

m 1 m 1 
h F = ~ R K d E R K - -  ~, cKLRXGxoRL+~ ~, cKLRLGxo RE, (16) 

K 2 K L  , K,L 

where dt~ is an arbitrary symmetric matrix and CKL are arbitrary nonzero numerical 
coefficients (CKL ~ %K)" General comments on h-F and its connection with the level- 
shifting technique 1-4] are reported in Ref. [-5c]. 

As shown in Ref. [6a, b], the relations (15') express the Hermitian conditions which 
the Lagrangian multiplier matrix must satisfy. They are the AO representation of 
the so-called generalized Brillouin theorem for optimum orbitals of Refs. 1-6a, b] 
(see also [-lb]). 
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The matrix Ex defined by the identity (14) is the correspondent in the AO 
representation of the single-form non-Hermitian operator introduced in Ref. [3a], 
being indeed 

E x l I ) - h I I I )  and Exl V)-hVl  V). 

Multiplying the stationary conditions (15) by, say, R L on the right we obtain, for the 
PEMCSCF theory, the equation 

(hL--~RKhK)RL=O ( L = l , . . . m ) ,  
K i 

which is the correspondent in the AO representation of a particular case (for 2ji = 1, 
to be exact) of the correct variational equation for optimum manifolds R L (or 
orbitals I L ) ,  if we had multiplied by lL) instead of R L) introduced and discussed at 
length in Refs. [6a, b] in the context of the general SCF theory: this equation is the 
starting point of the coupling operator method (see also [6c]). 

4. Computational Procedure for Energy Minimization 

In order to reach a stationary point on the energy surface satisfying the (minimum) 
conditions (12) for orbitals along with optimum CI expansion coefficients, an 
iterative process can be set up according to the following steps [lc]. 

1) The LCAO coefficient matrix to start with may be (but not necessarily) 
ground state SCF solution orbitals: the matrices C, D and R K= TKI"K are 
obtained in this way. 

2) The eigenvalue problem corresponding to the CI matrix of elements (7) is 
solved for the lowest eigenvector, obtaining the initial CI coefficients 

{bo, bvi}. 
3) The CI coefficients so found are held fixed and the minimization process for 

the orbital coefficients is started with X =  0, the gradient Gx is computed and a 
new point X' is found along the chosen algorithm. With the new matrix U' 
= U(X'), corresponding to X', the transformed matrices ~,K= U,R K (/, are 
calculated and then employed for the new iteration. In the calculations 
reported below the variable metric algorithm of Murtagh and Sargent has 
been applied as described in Ref. [ la].  

4) When some degree of optimization is reached, the matrices k K (or r l)) 
so found are used in step 2 to redetermine the new coefficients {bo, by1 } ; then 
step 3 follows. 

This sequence forms the third part of a computer program. The first part is the 
Hehre-Pople Gaussian 70 program [7] for the SCF quantities, the second part 
contains the integral transformation into the basis of Schmidt orthonormal and 
symmetry adapted orbitals. 

Spatial symmetry is readily taken into account due to the block structure of the 
matrices R K, G(R K) and K(R~). 
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5. Test Calculations 

In this section we present our results for SCF, CI (pair excitations) and MC SCF 
calculations relative to the energies and the dipole moments  of  LiH and NH3 
molecules (see Table 1). The comparison with some results of other authors is also 
reported. All calculations have been done with STO-6G basis expansion [7]. 

TaMe 1. MCSCF results for LiH and NH 3 molecules 

Total energies (hartree) 

Esc~ EMc Escv - E c I  Escv - EMc 
a b c a b c 

LiH -7.9854 -8.0318 0.0367 0.024 - -  0.0464 0.031 0.0442 
NH 3 -56.1483 -56.2030 0.0393 0.031 0.0253 0.0547 0.034 0.0297 

Dipole Moments (debye) 
SCF CI MCSCF Exp. 
a b a b a b 

LiH 6.005 5.63 5.956 5.56 5.906 5.11 5.88 
NH 3 2.275 2.06 2.263 2.04 2.239 2.03 1.47 

apresent work. u Ref. [3]. c Ref. [2]. 

For LiH molecule we assume a bond distance of 3.015 bohr and the same basis set of 
the Ref. [2]. The ground state SCF energy is near to the Hartree-Fock limit 
( -7 .987313 hartree [8]) and the final MC SCF energy accounts for the 54 per cent 
of the correlation energy (the exact value being -8 .0703 hartree [9]) while our CI 
calculation accounts for the 42 per cent. Moreover,  the MC SCF calculation 
changes the dipole moment  in the proper way. 

For  the NH3 molecule the experimental geometry has been assumed (RN_ H 
= 1.91 bohr, H N H  = 106.7~ For the nitrogen atom we use the double-~ basis of 
Clementi [10] while for the hydrogen atom the basis set includes the ls and 2s 
orbitals already used in the LiH calculation. The SCF energy is far f rom the Hartree- 
Fock limit ( - 56.225 hartree l-11]) and the MC calculation is not able to reach this 
limit. Thus, the gain in energy may not be considered of correlation nature. The 
dipole moment,  even if far f rom the experimental value, is corrected by the MC 
calculation in a right sense. 

A positive feature of the method, already noted in our previous papers, is its good 
numerical stability and its convergence guarantee. In order to give a rough idea of 
the convergence rate of the method we refer to the LiH calculation. Assuming as 
convergence criterion a gradient modulus smaller than 0.00015, the energy 
minimum has been reached after seven cycles, each including the determination of 
the secular determinant lowest root followed by about  thirty iterations for orbital 
optimization. The values of the parameter ~ [1] were chosen in the range 
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0.040 - 0.050 and no attempt was made of  optimizing these values to improve the 
convergence rate. Each cycle required about 2.5 minutes (CPU time only) on a 
U N I V A C  1106 computer, but we point out that the present version of  the 
computing program may be largely improved. 
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